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Abstract

We consider equivariant holomorphic immersions of a universal coverX̃ of a compact Riemann
surfaceX into a GrassmannianG(n,C2n) satisfying a nondegeneracy condition. The equivariance
condition says that there is a homomorphismρ of the Galois group to GL(2n,C) that takes the
natural action of the Galois group oñX to the action of the Galois group onG(n,C2n) defined using
ρ. We prove that the space of such embeddings are in bijective correspondence with the space of all
holomorphic differential operators of order two on a rankn vector bundle overX with the property
that the symbol of the operator is an isomorphism. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

LetX be a compact connected Riemann surface of genusg. Fix a universal cover̃X of X.
Letπ : X̃ → X be the projection map. The group of deck transformations will be denoted
by Γ . So,X = X̃/Γ .

Let V denote a complex vector space of dimension 2n. LetG := G(n, V ) be the Grass-
mannian of alln dimensional subspaces ofV . The holomorphic tangent space toG at a point
representing a subspaceF ⊂ V is Hom(F, V/F). Therefore, given a holomorphic map

f : X̃ → G, (1.1)

the differential df (x) at any pointx ∈ X̃ gives a homomorphism

d̃f (x) : TxX̃ ⊗ F → V/F, (1.2)

whereF ⊂ V is the subspace represented byf (x).
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We will call the mapf to be nondegenerateif d̃f (x) is an isomorphism at every
x ∈ X̃.

Let ρ : Γ → GL(V ) be a homomorphism. The mapf in (1.1) is calledequivariant
with respectρ if it commutes with the actions ofΓ on X̃ andG(n, V ). Note that usingρ,
the natural action of GL(V ) onG(n, V ) induces an action ofΓ onG(n, V ).

Take two such pairst := (f, ρ) andt′ := (f ′, ρ′). Sof (respectively,f ′) is equivariant
with respect toρ (respectively,ρ′). We will call t to be equivalentto t′ if there is an
automorphismT ∈ GL(V ) that satisfies the following two conditions:T · f = f ′ and
T · ρ · T −1 = ρ′.

LetA denote the space of all equivalence classes of all pairs(f, ρ), whereρ is a homo-
morphism andf is a nondegenerate map as in (1.1) equivariant with respect toρ.

Let E andF be two holomorphic vector bundles overX and

D ∈ H 0(X,Diff 2
X(E, F )) (1.3)

be a global differential operator of order 2. Thesymbolσ(D) of D is a homomorphism
from E ⊗ K⊗2

X to F , whereKX is the holomorphic cotangent bundle ofX. The symbol
map is defined in Section 2.

We assume that the operatorD in (1.3) has the property that the symbolσ(D) is an
isomorphism. So, in particularF ∼= K⊗2

X ⊗ E. Another such operator

D′ ∈ H 0(X,Diff 2
X(E′,K⊗2

X ⊗ E′))

will be called equivalent toD if there is an isomorphismT : E → E′ such that the following
diagram commutes

HereW denotes the sheaf of local holomorphic sections of a holomorphic vector bundle
W .

LetB′ denote the space of equivalence classes of such differential operators.
In Theorem 3.1, we construct a map

F : B′ → A,

which turns out to be surjective.
In Theorem 4.1, we construct an injective map

F ′ : A→ B′.

The mapF is the left inverse ofF ′. In other words, the compositionF · F ′ is the identity
map ofA. The mapF is not injective ifg ≥ 1.

Let L be a holomorphic line bundle overX equipped with a flat connection. Given any
D ∈ B′ as in (1.3), using the flat connection onL, the operatorD gives another operator

D′ ∈ H 0(X,Diff 2
X(E ⊗ L,K⊗2

X ⊗ E ⊗ L)) ∈ B′.
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Let B denote the space of all equivalence classes of elements inB′, whereD is equivalent
to D′ if there is a flat line bundleL such thatD′ is obtained fromD in the above fashion.

The mapF (orF ′) induces a bijective correspondence between the two spacesA andB
(Theorem 4.2).

Many interesting results on maps of a curve into a Grassmannian can be found in [2]. In
fact, reading [2] inspired to look into maps of curves to Grassmannians. In [4] we prove
similar results for embeddings in the Grassmannian ofr-dimensional subspaces inCnr.

2. Construction of connection from differential operator

We briefly recall the definition of jet bundles and its basic properties.
Let E be a holomorphic vector bundle overX, and letk be a nonnegative integer.

The kth order jet bundleof E, denoted byJ k(E), is defined to be the following direct
image onX:

J k(E) := p∗
1

(
p∗

2E

p∗
2E ⊗OX×X(−(k + 1)∆)

)
,

wherepi : X×X → X, i = 1,2, is the projection onto theith factor and∆ is the diagonal
divisor onX×X consisting of all points of the form(x, x). There is a natural exact sequence

0 → K⊗k
X ⊗ E → J k(E) → J k−1(E) → 0 (2.1)

which is constructed using the obvious inclusion ofOX×X(−(k + 1)∆) in OX×X(−k∆).
The inclusion mapK⊗k

X ⊗ E → J k(E) is constructed by using the homomorphism

K⊗k
X → J k(OX),

which is defined at anyx ∈ X by sending(df )⊗k, wheref is any holomorphic function
with f (x) = 0, to the jet of the functionf k/k! at x. Any homomorphismE → F induces
a homomorphism

J k(E) → J k(F ) (2.2)

for anyk ≥ 0.
The sheaf ofdifferential operatorsDiff k

X(E, F ) is defined to be Hom(J k(E), F ). The
homomorphism

σ : Diff k
X(E, F ) → Hom(K⊗k

X ⊗ E,F)

obtained by restricting a homomorphism fromJ k(E) toF to the subsheafK⊗k
X ⊗E in (2.1)

is known as thesymbol map.
So, for anyD ∈ H 0(X,Diff 2

X(E, F )) the symbolσ(D) is a homomorphism fromK⊗2
X ⊗

E to F . This proves the assertion in the introduction thatF ∼= K⊗2
X ⊗ E for anyD ∈ B′.

In that case, using this isomorphism, the symbol ofD is the identity automorphism ofE.
For allk, l ≥ 0, there is a natural injective homomorphism

τ : J k+l (E) → J k(J l(E)). (2.3)
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We will describe the image ofτ for the special casek = 1 = l. Using (2.2), the homomor-
phismJ 1(E) → E in (2.1) gives a homomorphismγ : J 1(J 1(E)) → J 1(E). On the other
hand, (2.1) gives a homomorphismγ ′ : J 1(J 1(E)) → J 1(E). The imageτ(J 2(E)) is the
kernel of the differenceγ − γ ′. In other words, we have an exact sequence

0 → J 2(E)
τ→J 1(J 1(E))

γ−γ ′
→ KX ⊗ E → 0. (2.4)

Note that the image ofγ − γ ′ is contained in the subbundleKX ⊗ E ⊂ J 1(E) since the
two projections ofJ 1(J 1(E)) to E, obtained fromγ andγ ′, respectively, coincide.

Let D ∈ H 0(X,Diff 2
X(E,E ⊗ K⊗2

X )) as in (1.3) be an operator inB′. Consider the
commutative diagram

(2.5)

whereτ is defined in (2.3).
Now, since the symbol ofD is the identity automorphism ofE, the operatorD, which is

a homomorphism fromJ 2(E) to K⊗2 ⊗ E, gives a splitting of the top exact sequence in
(2.5). Let

fD : J 1(E) → J 2(E)

be the homomorphism given by this splitting. The compositionτ · fD is splitting of the
bottom exact sequence in (2.5).

A splitting of the bottom exact sequence in (2.5) is a holomorphic connection onE [1].
Since dimCX = 1, any holomorphic connection onX is flat. Therefore, the operatorD
gives a flat connection onJ 1(E).

Let ∇D denote the flat connection onJ 1(E) obtained fromD.
Consider the subbundleKX ⊗ E of J 1(E) given by (2.1). Its second fundamental form

for the connection∇D gives a homomorphism

φ : E → E.

If s is a local holomorphic section ofE defined around a pointx ∈ X, thenφ sendss(x)
to the projection onEx of ∇D

v (v∗ ⊗ s) ∈ J 1(E)x , wherev ∈ TxX is any nonzero tangent
vector andv∗ is any local holomorphic section ofKX such thatv∗(x) is the dual ofv.

Proposition 2.1. The second fundamental formφ is the identity automorphism ofE.

Proof. The proof involves a tedious unraveling of the various definitions.
Take a pointx ∈ X and take a vectorv ∈ (KX ⊗ E)x in the fiber overx. Consider

fD(v) ∈ J 2(E)x,

wherefD defined above is the splitting homomorphism for the top exact sequence in (2.5).
Let s be a local holomorphic section ofE defined aroundx such that the element in the fiber
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J 2(E)x representings coincides withfD(v). The commutativity of the right-hand square
in (2.5) implies thats(x) = 0 and the element inJ 1(E)x representings is v.

Consider the commutative diagram

where all the exact sequences (horizontal or vertical), except the middle vertical one, are
obtained from (2.1), and all the homomorphisms in the middle vertical exact sequence are
obtained from (2.2). The above homomorphismγ is the one constructed in (2.1). Recall
thatγ is the homomorphism in (2.2) for the projectionJ 1(E) → E.

Take a local holomorphic sectionuof the subbundleKX⊗E of J 1(E) such thatu(x) = v.
The section ofJ 1(J 1(E)) representingu will be denoted byu. From the exactness of the
middle vertical sequence it follows thatγ (u) = 0.

Recall thatJ 2(E)x is a subspace ofJ 1(J 1(E))x . The imageγ (fD(v)) clearly coincides
with the imageδ(v), whereδ is defined in the above diagram. In view of the earlier remark
thatγ (u) = 0, from the definition ofφ it follows immediately that ifv = ω ⊗ e, where
ω ∈ (KX)x ande ∈ E, thenφ(e) = e. This completes the proof of the proposition. �

In Section 3 using the connection∇D, we will construct a nondegenerate immersion of
the universal cover̃X in G(n, V ).

3. Relationship between connections and immersions

We continue with the notation set up in Sections 1 and 2.
Considerπ∗J 1(E) on X̃. Fix a pointy ∈ X̃ together with an isomorphism ofπ∗J 1(E)y

with the vector spaceV . Using the connectionπ∗∇D, the vector bundleπ∗J 1(E) gets
identified with the trivial vector bundle over̃X with fiberV .

The monodromy of∇D gives a homomorphism

ρ : Γ = π1(X, π(y)) → Aut(Eπ(y)) = GL(V ) (3.1)

A different choice of the isomorphism betweenπ∗J 1(E)y andV sendsρ to the composition
of ρ with an inner conjugation of GL(V ).

Let

f : X̃ → G := G(n, V ) (3.2)
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be the holomorphic map that sends anyz ∈ X̃ to the subspace

π∗(KX ⊗ E)z ⊂ π∗J 1(E)z = V.

From its definition, it is immediate that the mapf is equivariant with respect toρ defined
in (3.1).

Our next goal is to show thatf is nondegenerate in the sense defined in the introduction.

Proposition 3.1. The homomorphism̃df defined in(1.2)is an isomorphism. In other words,
the map f is nondegenerate.

Proof. First observe that the homomorphism̃df coincides with the second fundamental
form for the subbundleπ∗(KX ⊗ E) of the flat vector bundleπ∗J 1(E). This is obvious.
Indeed, if

0 → S → V → Q → 0

is the universal exact sequence onG(n, V ), whereV is the trivial vector bundle overG(n, V )

with fiberV , then the second fundamental form ofS for the natural flat connection onV is
the canonical identification TG(n, V ) ∼= Hom(S,Q).

The second fundamental form of a subbundle is compatible with the pullback operation.
In other words,̃df coincides withπ∗φ. Therefore, from Proposition 2.1, it follows that̃df
is an isomorphism. This completes the proof of the proposition. �

Note that from the proof of Proposition 3.1 it follows immediately that if̃df is an
isomorphism then the second fundamental form for the restriction toX̃ of the above universal
exact sequence overG(n, V ) is also an isomorphism.

The element(f, ρ) ∈ A constructed in (3.1) and (3.2) does not depend on the choice of
the pointy or on the choice of the isomorphism betweenπ∗J 1(E)y andV .

Therefore, summarizing the construction we have

Theorem 3.1. There is a canonical map

F : B′ → A

that sends a differential operator D to the pair(f, ρ) constructed above from D.

We will now derive a consequence of the isomorphism condition of second fundamental
forms.

LetW be a holomorphic vector bundle of rank 2n overX equipped with a flat connection
∇. Let

0 → S′ i→W
q→Q′ → 0 (3.3)

be an exact sequence of holomorphic vector bundles with rank(S′) = n = rank(Q′). There
is a natural homomorphism

β : W → J 1(Q′) (3.4)
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which is defined as follows. For anyx ∈ X andv ∈ Wx , let s denote the (unique) local flat
section ofW defined aroundx with s(x) = v. The mapβ sendsv to the element inJ 1(Q′)x
representingq · s, whereq is the projection in (3.3).

Let

ψ : S′ → KX ⊗ Q′,

be the second fundamental form of the subbundleS′ for ∇.

Lemma 3.1. If the second fundamental formψ is an isomorphism, then the homomorphism
β defined in(3.4) is also an isomorphism.

Proof. The following diagram evidently commutes

Let β : S′ → KX ⊗ Q′ be the homomorphism obtained by restrictingβ to S′.
Comparing the definitions ofβ andψ it is easy to see thatβ coincides withψ . This

completes the proof the lemma. �

Let E be a stable vector bundle of rankn and degreen(1 − g). See [3] about stable
bundles.

SinceE is stable, we haveH 0(X,End(E)) = C, and henceH 1(X,KX ⊗End(E)) = C.
Let

0 → KX ⊗ E
i→W

q→E → 0 (3.5)

be the unique nontrivial extension.

Lemma 3.2. The extension W admits flat connections. For every flat connection∇ on W,
the second fundamental form ofKX ⊗ E is an isomorphism.

Proof. A result of A. Weil says that a holomorphic vector bundleW0 overX admits a flat
connection if and only if every direct summand ofW0 is of degree zero. Therefore, to prove
thatW admits a flat connection it suffices to show thatW is not a direct sum of vector
bundles.

Assume thatW = W1 ⊕ W2. Take two nonzero distinct scalarsµ1 andµ2, and letT
denote the automorphism ofW that acts as multiplication byµi onWi .

Consider the compositionq · T · i : KX ⊗ E → E, whereq andi are as in (3.5). Since
E is stable and degree(KX ⊗ E) > degree(E), we haveq · T · i = 0. Now, sinceE is
simple,KX ⊗ E must be contained in eitherW1 or W2.

Sinceq · T · i = 0, the automorphismT induces an automorphism of the quotientE in
(3.5). SinceE is stable, the induced automorphism ofE must be a scalar multiplication.
This implies thatKX ⊗ E must coincide with eitherW1 or W2. If KX ⊗ E = W1, then
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the eigenspace ofW for the eigenvalueµ2 gives a splitting of (3.5). This contradicts the
nontriviality of the extension and henceW admits a flat connection.

Let ∇ be a flat connection onW . Now, since degree(KX ⊗ E) �= 0, it does not admit
any flat connection. Therefore, the connection∇ does not preserveKX ⊗ E. In other
words, the second fundamental form ofKX ⊗E must be nonzero. Finally, since the second
fundamental form is an endomorphism ofE, andE is simple, the endomorphism must be
an isomorphism. This completes the proof of the lemma. �

We note that now Lemma 3.1 says thatW ∼= J 1(E).
A polystable vector bundle is a direct sum of stable vector bundles of same quotient

degree/rank. IfE is polystable of degreen(1 − g), then clearly Lemma 3.2 remains valid
for E. Indeed, a connection on a direct sum of vector bundles induces a connection on each
direct summand.

In the first part of this section, we saw that a flat connection onJ 1(E), with the second
fundamental form an isomorphism, gives an element(f, ρ) ∈ A. Therefore, from the space
of all pairs(W,∇), whereW is polystable and∇ is a flat connection onJ 1(W), we have a
map toA.

If genus(X) ≥ 2, then degree(KX) > 0. Consequently, for any polystable vector bundle
E overX, the sequence (3.5) defines the Harder–Narasimhan filtration ofW = J 1(E).
Therefore, for another polystable vector bundleE′, if J 1(E′) is isomorphic toJ 1(E), then
E must be isomorphic toE′.

In Section 4 we will construct a map fromA toB′.

4. Construction of differential operators from immersions

Let (f, ρ) ∈ A. Consider the pullback

0 → f ∗S → f ∗V → f ∗Q → 0

on X̃ of the universal exact sequence ofG(n, V ). Since this exact sequence is equivariant
for the action ofΓ throughρ, it descends toX as an exact sequence

0
i→F → W

q→E → 0 (4.1)

The flat connection onf ∗V descends to a flat connection∇ onW .
We noted in the previous section that the nondegeneracy condition of the mapf ensures

that the second fundamental form for the subbundlef ∗S of the flat bundlef ∗V is an
isomorphism. Therefore, the second fundamental form of the subbundleF in (4.1) for∇ is
an isomorphism.

For any pointx ∈ X and any vectorv ∈ Wx in the fiber, letv denote the unique flat local
section ofW , defined aroundx, such thatv(x) = v. For any integerk ≥ 1, let

θk : W → J k(E) (4.2)

denote the homomorphism that sends anyv to the element inJ k(E)x representing the local
sectionq(v) of E, whereq is defined in (4.1). It is easy to see that the following diagram
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is commutative

(4.3)

where the homomorphismJ k+1(E) → J k(E) is given by (2.1) andθk is defined in (4.2).
We already noted that the second fundamental form forF is an isomorphism. Conse-

quently, Lemma 3.1 says thatθ1 is an isomorphism. Now consider the composition

θ := θ2 · θ−1
1 : J 1(E) → J 2(E).

The commutativity of (4.3) immediately implies thatθ gives a splitting of the top exact
sequence in (2.5).

Consequently, we have differential operatorD ∈ H 0(X,Diff 2
X(E,K⊗2

X ⊗ E)) defined
by the homomorphismJ 2(E) → K⊗2

X ⊗E obtained from the splitting defined byθ . Since
D is defined by a splitting of the jet sequence, its symbol is the identity automorphism of
E.

It is easy to see that the elementF(D) ∈ A, whereF is constructed in Theorem 3.1, is
equivalent to the pair(f, ρ) we started with.

Therefore, we now have

Theorem 4.1. There is a canonical map

F ′ : A→ B′

that sends any pair(f, ρ) to the differential operator D constructed above. Furthermore,
the compositionF · F ′ is the identity map ofA. In particular, F ′ is injective andF is
surjective.

It now remains to examine howF fails to be injective.
Let L be a holomorphic line bundle overX equipped with a flat connection∇L.
Take a differential operatorD ∈ H 0(X,Diff 2

X(E,K⊗2
X ⊗ E)) with symbol IdE . Set

E′ := E ⊗L. Any local holomorphic sections′ of E′ can be expressed ass ⊗ l, wheres is
a local holomorphic section ofE andl is aflat local section ofL. Construct a differential
operator

D′ ∈ H 0(X,Diff 2
X(E′,K⊗2

X ⊗ E′))

by sending every such local sections′ of E′ to the local sectionD(s) ⊗ l of K⊗2
X ⊗ E′.

Since any two flat local sections ofL differ by multiplication with a constant scalar, the
differential operatorD′ is well-defined. It is also obvious that the symbol ofD′ is the identity
automorphism ofE′. Consequently,D′ defines an element ofB′.

We will call two operatorsD,D′ ∈ B′ to beequivalentif there is some flat line bundle
L such thatD′ is constructed fromD in the above fashion. LetB denote the space of all
equivalence classes.
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From the construction of the mapF in Theorem 3.1, it is immediate that it factors through
the projectionη : B′ → B. LetF : B→ A be the map induced byF . It is straight-forward
to check that the two mapsF andη · F ′ are inverses of each other.

Therefore, we now have

Theorem 4.2. The two mapsF andη · F ′ induce bijective correspondence between the
two spacesA andB, and they are inverses of each other.

In Section 3, we saw that any pair(E,∇), whereE is a polystable vector bundle of rank
n overX of degreen(1−g) and∇ is a flat connection onJ 1(E), gives an element ofA, and
hence it gives an element ofB. It may be interesting to be able to characterize the subset of
A (orB) defined by such pairs. It is not clear whether it is a proper subset.
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