NH
& JOURNAL OF

\$ e e S31Val
?E GEOMETRY ao>

PHYSICS
ELSEVIER Journal of Geometry and Physics 41 (2002) 286—295

www.elsevier.com/locate/jgp

Differential operators and immersions of a
Riemann surface into a Grassmannian

Indranil Biswas

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Received 26 February 2001

Abstract

We consider equivariant holomorphic immersions of a universal cévefra compact Riemann
surfaceX into a Grassmanniafi (n, C?") satisfying a nondegeneracy condition. The equivariance
condition says that there is a homomorphisrof the Galois group to G2, C) that takes the
natural action of the Galois group &hto the action of the Galois group @n, C2") defined using
0. We prove that the space of such embeddings are in bijective correspondence with the space of all
holomorphic differential operators of order two on a rankector bundle ovek with the property
that the symbol of the operator is an isomorphism. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X be a compact connected Riemann surface of genli a universal covek of X.
Letw : X — X be the projection map. The group of deck transformations will be denoted
by I'. So,X = X/TI.

Let V denote a complex vector space of dimensianl®t G := G (n, V) be the Grass-
mannian of alk dimensional subspaceswf The holomorphic tangent spacedat a point
representing a subspagec V is Hom(F, V/F). Therefore, given a holomorphic map

fiX—>G, (1.1)
the differential of (x) at any pointc € X gives a homomorphism
df(x): wX®F — V/F, (1.2)

whereF C V is the subspace represented fi).

E-mail addressindranil@math.tifr.res.in (I. Biswas).

0393-0440/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
PIl: S0393-0440(01)00062-6



I. Biswas/ Journal of Geometry and Physics 41 (2002) 286-295 287

We will call the map f to be nondegeneratef &7‘(x) is an isomorphism at every
x € X.

Letp : I' — GL(V) be a homomorphism. The magpin (1.1) is calledequivariant
with respec if it commutes with the actions af on X andG(n, V). Note that using,
the natural action of GUV/) on G (n, V) induces an action af onG(n, V).

Take two such pairs:= (f, p) andt’ := (f’, p’). So f (respectively,f’) is equivariant
with respect top (respectively,o’). We will call t to be equivalentto t' if there is an
automorplhismT € GL(V) that satisfies the following two condition%: - f = f’ and
T -p-T t=p.

Let .4 denote the space of all equivalence classes of all pdirs), wherep is a homo-
morphism andf is a nondegenerate map as in (1.1) equivariant with respect to

Let E and F be two holomorphic vector bundles ovErand

D e H(X, Diff 4 (E, F)) (1.3)

be a global differential operator of order 2. Thgmbolo (D) of D is a homomorphism
from E ® K?z to F, whereKy is the holomorphic cotangent bundle ¥f The symbol
map is defined in Section 2.

We assume that the operatbrin (1.3) has the property that the symholD) is an
isomorphism. So, in particulgr = K;@(’Z ® E. Another such operator

D' e HO(X,Diff 2(E', K$? ® E'))
will be called equivalent t® if there is an isomorphisifi : E — E’such thatthe following

diagram commutes

L, K®QE

E
JT deT
E L KPeF
Here W denotes the sheaf of local holomorphic sections of a holomorphic vector bundle
w.

Let B’ denote the space of equivalence classes of such differential operators.

In Theorem 3.1, we construct a map

F:B — A,
which turns out to be surjective.
In Theorem 4.1, we construct an injective map
F A B.

The map¥ is the left inverse ofF’. In other words, the compositiah - F’ is the identity
map of A. The mapF is not injective ifg > 1.

Let L be a holomorphic line bundle ovéf equipped with a flat connection. Given any
D € B’ asin (1.3), using the flat connection dnthe operatoD gives another operator

D' e HX,Diff 2(E® L, K$?® E® L)) € B.
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Let B denote the space of all equivalence classes of elemefsivhereD is equivalent
to D' if there is a flat line bundIl& such thatD’ is obtained fromD in the above fashion.

The mapF (or F’) induces a bijective correspondence between the two sphees 3
(Theorem 4.2).

Many interesting results on maps of a curve into a Grassmannian can be found in [2]. In
fact, reading [2] inspired to look into maps of curves to Grassmannians. In [4] we prove
similar results for embeddings in the Grassmanniandiinensional subspacesd@'.

2. Construction of connection from differential operator

We briefly recall the definition of jet bundles and its basic properties.

Let E be a holomorphic vector bundle ovét, and letk be a nonnegative integer.
The kth orderjet bundleof E, denoted by/*(E), is defined to be the following direct
image onX:

P5E @ Oxxx(—(k+1)A)

wherep; : X x X — X,i =1, 2, is the projection onto thih factor andA is the diagonall
divisor onX x X consisting of all points of the forrtx, x). There is a natural exact sequence

0— K$*®E— JNE) - J*HE) - 0 (2.1)

which is constructed using the obvious inclusion®f « x (—(k + 1) A) in Oxxx(—kA).
The inclusion magk ¢ ® E — J*(E) is constructed by using the homomorphism

K — Jk0y),

which is defined at any € X by sending(df)®*, where f is any holomorphic function
with f(x) = 0, to the jet of the functiorf*/k! at x. Any homomorphisnE — F induces
a homomorphism

JKE) = JK(F) (2.2)

foranyk > 0.
The sheaf oflifferential operator<Diff ’,‘((E, F) is defined to be Hotv*(E), F). The
homomorphism

o : Diff & (E, F) - Hom(K$* @ E, F)

obtained by restricting a homomorphism fratf( E) to F to the subshed{’;‘?" ®Ein(2.1)
is known as thesymbol map
So, foranyD € HO(X, Diff %(E, F)) the symbob (D) is a homomorphism frorK§2®
E to F. This proves the assertion in the introduction tha% Kf?z ® E foranyD € B'.
In that case, using this isomorphism, the symbabaf the identity automorphism df.
For allk, > 0, there is a natural injective homomorphism

r JME) > JRUNE)). (2.3)
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We will describe the image af for the special case = 1 = [. Using (2.2), the homomor-
phismJ1(E) — E in (2.1) gives a homomorphism: J1(J1(E)) — J1(E). Onthe other
hand, (2.1) gives a homomorphism: J1(J1(E)) — JY(E). The imager (J2(E)) is the
kernel of the differencer — y’. In other words, we have an exact sequence

0 JAE)SIAIYENY T Kx ® E — 0. (2.4)

Note that the image of — y’ is contained in the subbundky ® E c J(E) since the
two projections of/1(J1(E)) to E, obtained fromy andy’, respectively, coincide.

Let D € H(X,Diff2(E, E ® K$?)) as in (1.3) be an operator i. Consider the
commutative diagram

0 — K®QFE — J¥E) — JYE) — 0
T l
0 — Kx®JYE) — JYJYE) — JYE) — 0 (2.5)

wherer is defined in (2.3).

Now, since the symbol ab is the identity automorphism df, the operatoD, which is
a homomorphism frond2(E) to K®2 ® E, gives a splitting of the top exact sequence in
(2.5). Let

fp: JYE) — J3(E)

be the homomorphism given by this splitting. The compositionfp is splitting of the
bottom exact sequence in (2.5).

A splitting of the bottom exact sequence in (2.5) is a holomorphic connectidh|dh
Since ding X = 1, any holomorphic connection aXi is flat. Therefore, the operatd»
gives a flat connection o#'(E).

Let V2 denote the flat connection oH-(E) obtained fromb.

Consider the subbundEy ® E of J1(E) given by (2.1). Its second fundamental form
for the connectiorV? gives a homomorphism

¢ E— E.

If s is a local holomorphic section @ defined around a point € X, then¢ sendss(x)
to the projection orE, of VUD(v* ®s) € JY(E),, wherev e T, X is any nonzero tangent
vector andv* is any local holomorphic section &y such that*(x) is the dual ofv.

Proposition 2.1. The second fundamental fopns the identity automorphism df.

Proof. The proof involves a tedious unraveling of the various definitions.
Take a pointt € X and take a vectar € (Kxy ® E), in the fiber overc. Consider

o) € JAE),,

where fp defined above is the splitting homomorphism for the top exact sequence in (2.5).
Lets be alocal holomorphic section éfdefined arounda such that the element in the fiber
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J2(E), representing coincides withfp (v). The commutativity of the right-hand square

in (2.5) implies thak (x) = 0 and the element iil(E), representing is v.
Consider the commutative diagram

0 — KPQE — JY(Kx®E) — Kx®E — 0

where all the exact sequences (horizontal or vertical), except the middle vertical one, are
obtained from (2.1), and all the homomorphisms in the middle vertical exact sequence are
obtained from (2.2). The above homomorphignis the one constructed in (2.1). Recall
thaty is the homomorphism in (2.2) for the projectidh(E) — E.

Take alocal holomorphic sectiarof the subbundl& x ® E of J1(E) such that(x) = v.
The section of/1(J1(E)) representing: will be denoted byz. From the exactness of the
middle vertical sequence it follows thatu) = 0.

Recall that/2(E), is a subspace of}(J1(E)),. The image/ (fp(v)) clearly coincides
with the images (v), wheres is defined in the above diagram. In view of the earlier remark
thaty (w) = 0, from the definition ofp it follows immediately that ift = o ® e, where
w € (Kx), ande € E, theng (e) = e. This completes the proof of the proposition. O

In Section 3 using the connectiéi’, we will construct a nondegenerate immersion of
the universal covek in G(n, V).

3. Relationship between connectionsand immersions

We continue with the notation set up in Sections 1 and 2.

Considert*J1(E) on X. Fix a pointy € X together with an isomorphism af* J(E),
with the vector spac& . Using the connectiom*V?, the vector bundler* J1(E) gets
identified with the trivial vector bundle ovef with fiber V.

The monodromy o ? gives a homomorphism

p: I =m(X,n(y)) = Aut(Ex(y)) = GL(V) (3.1)

A different choice of the isomorphism betweeh]l(E)y andV sends to the composition
of p with an inner conjugation of GV).
Let

f:X—>G:=G@m,V) (3.2)
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be the holomorphic map that sends any X to the subspace
7" (Kx ® E), C n*JYE), = V.

From its definition, it is immediate that the mgpis equivariant with respect to defined
in (3.1).
Our next goal is to show that is nondegenerate in the sense defined in the introduction.

Proposition3.1. The homomorphisd?]” definedin(1.2)is anisomorphism. In other words,
the map f is nondegenerate.

Proof. First observe that the homomorphisﬁ}f coincides with the second fundamental
form for the subbundle* (K x ® E) of the flat vector bundle* J1(E). This is obvious.
Indeed, if

0>S—>V->0->0

is the universal exact sequence®f, V), whereV is the trivial vector bundle oves (n, V)
with fiber V, then the second fundamental form$for the natural flat connection on is
the canonical identification T@, V) = Hom(S, Q).
The second fundamental form of a subbundle is compatible with the pullback operation.
In otherwordsdf coincides withr *¢. Therefore, from Proposition 2.1, it follows théyf
is an isomorphism. This completes the proof of the proposition. O

Note that from the proof of Proposition 3.1 it follows immediately thatljf is an
isomorphism then the second fundamental form for the restricti#rofihe above universal
exact sequence ovél(n, V) is also an isomorphism.

The elementf, p) € A constructed in (3.1) and (3.2) does not depend on the choice of
the pointy or on the choice of the isomorphism betwenef‘hll(E)y andV.

Therefore, summarizing the construction we have

Theorem 3.1. There is a canonical map
F:B—> A
that sends a differential operator D to the paif, p) constructed above from.D

We will now derive a consequence of the isomorphism condition of second fundamental
forms.

Let W be a holomorphic vector bundle of rank 8ver X equipped with a flat connection
V. Let

0 S5who =0 (3.3)

be an exact sequence of holomorphic vector bundles with(84nk n = rank(Q’). There
is a natural homomorphism

g:W — JYQ) (3.4)
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which is defined as follows. For anye X andv € W,, lets denote the (unique) local flat
section ofW defined around with s(x) = v. The maps sends to the element i 1(Q’),
representing - s, whereg is the projection in (3.3).

Let

Yv:S - Kx®Q,
be the second fundamental form of the subburisdier V.

Lemma3.1. Ifthe second fundamental forgnis anisomorphism, then the homomorphism
B defined in(3.4)is also an isomorphism.

Proof. The following diagram evidently commutes

B

w — JYQ)
L
Q = Q

Letp : S — Kx ® Q' be the homomorphism obtained by restrictfhgp .
Comparing the definitions g8 and it is easy to see thag coincides withyr. This
completes the proof the lemma. O

Let E be a stable vector bundle of rankand degree:(1 — g). See [3] about stable
bundles.

SinceE is stable, we hav&/%(X, End(E)) = C, and henceéi1(X, Kx ® End(E)) = C.
Let

05 Kx®@ESWAE -0 (3.5)

be the unique nontrivial extension.

Lemma 3.2. The extension W admits flat connections. For every flat connettion W,
the second fundamental form &fy ® E is an isomorphism.

Proof. A result of A. Weil says that a holomorphic vector bunélfg over X admits a flat
connection if and only if every direct summandWj is of degree zero. Therefore, to prove
that W admits a flat connection it suffices to show thEtis not a direct sum of vector
bundles.

Assume thatV = W1 @ W». Take two nonzero distinct scalarg and up, and letT
denote the automorphism &f that acts as multiplication by; on W;.

Consider the compositiop- 7 -i : Kx ® E — E, whereq andi are as in (3.5). Since
E is stable and degreKx ® E) > degre€E), we haveg - T - i = 0. Now, sinceE is
simple,Kx ® E must be contained in eithév, or W.

Sinceqg - T - i = 0, the automorphisri induces an automorphism of the quotiéhin
(3.5). SinceE is stable, the induced automorphismfmust be a scalar multiplication.
This implies thatky ® E must coincide with eitheW; or Wa. If Kx ® E = Wy, then
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the eigenspace dV for the eigenvalueg, gives a splitting of (3.5). This contradicts the
nontriviality of the extension and hen&é admits a flat connection.

Let V be a flat connection oW . Now, since degré&xy ® E) # 0, it does not admit
any flat connection. Therefore, the connectidrdoes not preserv&y ® E. In other
words, the second fundamental formio§ ® E must be nonzero. Finally, since the second
fundamental form is an endomorphismfandE is simple, the endomorphism must be
an isomorphism. This completes the proof of the lemma. O

We note that now Lemma 3.1 says th@t= J1(E).

A polystable vector bundle is a direct sum of stable vector bundles of same quotient
degree/rank. I is polystable of degree(1 — g), then clearly Lemma 3.2 remains valid
for E. Indeed, a connection on a direct sum of vector bundles induces a connection on each
direct summand.

In the first part of this section, we saw that a flat connectiod &(E), with the second
fundamental form an isomorphism, gives an elenig¢np) € A. Therefore, from the space
of all pairs(W, V), whereW is polystable and is a flat connection od (W), we have a
map toA.

If genugX) > 2, then degreK x) > 0. Consequently, for any polystable vector bundle
E over X, the sequence (3.5) defines the Harder—Narasimhan filtratioh ef J1(E).
Therefore, for another polystable vector bungleif J1(E’) is isomorphic ta/1(E), then
E must be isomorphic t&’.

In Section 4 we will construct a map fromito B'.

4. Construction of differential operatorsfrom immersions

Let (f, p) € A. Consider the pullback
0— f*S - f*V— f*Q0 -0

on X of the universal exact sequence®n, V). Since this exact sequence is equivariant
for the action ofl" throughp, it descends t& as an exact sequence

05F > WhE -0 4.1)

The flat connection orf*V descends to a flat connecti®on W.

We noted in the previous section that the nondegeneracy condition of th¢ eragures
that the second fundamental form for the subbungiié of the flat bundlef*V is an
isomorphism. Therefore, the second fundamental form of the subb#ridié4.1) forV is
an isomorphism.

For any pointr € X and any vectoo € W, in the fiber, le denote the unique flat local
section ofW, defined around, such thav(x) = v. For any integek > 1, let

O 1 W — JX(E) (4.2)

denote the homomorphism that sends aty the element i (E), representing the local
sectiong (v) of E, whereg is defined in (4.1). It is easy to see that the following diagram
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is commutative

w2 R

u |

Ok

w = JHE) (4.3)

where the homomorphist¥t1(E) — J*(E) is given by (2.1) andy is defined in (4.2).
We already noted that the second fundamental formFfas an isomorphism. Conse-
quently, Lemma 3.1 says thét is an isomorphism. Now consider the composition

0:=6 001 JYE) — JX(E).

The commutativity of (4.3) immediately implies thétgives a splitting of the top exact
sequence in (2.5).

Consequently, we have differential operafare H°(X, Diff §((E, Kffz ® E)) defined
by the homomorphismi?(E) — K $? ® E obtained from the splitting defined Iy Since
D is defined by a splitting of the jet sequence, its symbol is the identity automorphism of
E.

It is easy to see that the elemefitD) € A, whereF is constructed in Theorem 3.1, is
equivalent to the paiff, o) we started with.

Therefore, we now have

Theorem 4.1. There is a canonical map
F:A—->B

that sends any pai(f, p) to the differential operator D constructed above. Furthermore,
the compositionF - ' is the identity map ofd. In particular, F' is injective andF is
surjective.

It now remains to examine hoW fails to be injective.

Let L be a holomorphic line bundle ovér equipped with a flat connectiov’.

Take a differential operatob € HO(X, Diffff(E, Kf?z ® E)) with symbol Idz. Set
E’ := E ® L. Any local holomorphic sectiosf of E’ can be expressed a [, wheres is
a local holomorphic section df and! is aflat local section ofL. Construct a differential
operator

D' e HO(X, Diff 2(E', K$* ® E'))

by sending every such local sectighof E’ to the local sectiorD(s) ® I of Kf?z ® E'.
Since any two flat local sections &f differ by multiplication with a constant scalar, the
differential operatoD’ is well-defined. Itis also obvious that the symbol¥fis the identity
automorphism of’. ConsequentlyD’ defines an element &' .

We will call two operatorsD, D’ € B’ to beequivalentf there is some flat line bundle
L such thatD’ is constructed fronD in the above fashion. Lef denote the space of all
equivalence classes.
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From the construction of the m&pin Theorem 3.1, itis immediate that it factors through
the projection; : B’ — B. LetF : B — A be the map induced b. It is straight-forward
to check that the two mag’ andy - F’ are inverses of each other.

Therefore, we now have

Theorem 4.2. The two mapsF andn - F' induce bijective correspondence between the
two spacesd and B, and they are inverses of each other.

In Section 3, we saw that any p&it, V), wherekE is a polystable vector bundle of rank
n overX of degree:(1— g) andV is a flat connection o} (E), gives an element od, and
hence it gives an element Bf It may be interesting to be able to characterize the subset of
A (or B) defined by such pairs. It is not clear whether it is a proper subset.

References

[1] M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc. 85 (1957) 181-207.

[2] D. Perkinson, Curves in Grassmannians, Trans. Am. Math. Soc. 347 (1995) 3179-3246.

[3] C.S. Seshadri, (rédigé par J.-M. Drezet,) Fibrés vectoriels sur les courbes algébriques. Astérisque 96, Société
Mathématiques de France, 1982.

[4] I. Biswas, Differential operators and flat connections on a Riemann surface, preprint (2001).



	Differential operators and immersions of a Riemann surface into a Grassmannian
	Introduction
	Construction of connection from differential operator
	Relationship between connections and immersions
	Construction of differential operators from immersions
	References


